Skip to contents

ggplot2-wrapper to summarise and plot data (of rOstluft::format_rolf() format) for diurnal time course-stats including weekend-effect

Usage

ggdiurnal_weekend(
  data,
  y = "value",
  nmin = 3,
  fun = list(middle = "mean", middle2 = "median", ymin = "percentile05", lower =
    "percentile25", upper = "percentile75", ymax = "percentile95"),
  ribbon_color = "gray60",
  middle_color = "gray30",
  expand_xscale = 0
)

Arguments

data

a data.frame or tibble containing the data

y

a character string specifying the taget variable to be summarised, usually "value". outcomes of cut_timeseries_periodic().

nmin

numeric, minimum number of values for fun, if n < nmin: NA is returned

fun

function or list of functions for summary, can be named (then the outut stat is named after the function's name); Strings matching the regular expression /^percentile([0-9]){1,2}$/i are converted into the respective function. "percentile95" => function(x, ...) quantile(x, 95 / 100, ...)

ribbon_color

character string for specifying the ribbon color.

middle_color

character string for specifying the middle's color.

expand_xscale

multiplicative range expansion factor

Value

ggplot2::ggplot() object

Examples

library(ggplot2)
fn <- rOstluft.data::f("Zch_Stampfenbachstrasse_2010-2014.csv")

data <-
  rOstluft::read_airmo_csv(fn) %>%
  dplyr::filter(parameter %in% c("NOx", "O3", "PM10")) %>%
  rOstluft::resample(new_interval = "h1")

ggdiurnal_weekend(data)


# y scale: no expand on zero
ggdiurnal_weekend(data) +
  scale_y_continuous(limits = c(0, NA), expand = expansion(mult = c(0, 0.05))) +
  theme(panel.spacing.y = unit(12, "pt"))